Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 26(3): 106085, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36843851

RESUMEN

Graft-versus-host disease (GVHD) remains a serious limitation of allogeneic hematopoietic cell transplantation (allo-HCT). While post-transplant administration of cyclophosphamide (PTCy) is increasingly used as GVHD prophylaxis, its precise mechanisms of action and its impact on graft-versus-leukemia effects have remained debated. Here, we studied the mechanisms of xenogeneic GVHD (xGVHD) prevention by PTCy in different humanized mouse models. We observed that PTCy attenuated xGVHD. Using flow cytometry and single-cell RNA-sequencing, we demonstrated that PTCy depleted proliferative CD8+ and conventional CD4+ T cells but also proliferative regulatory T cells (Treg). Further, T-cell receptor ß variable region sequencing (TCRVB) analyses demonstrated that highly xenoreactive T-cell clones were depleted by PTCy. Although Treg frequencies were significantly higher in PTCy-treated than in control mice on day 21, xGVHD attenuation by PTCy was not abrogated by Treg depletion. Finally, we observed that PTCy did not abrogate graft-versus-leukemia effects.

2.
Front Immunol ; 13: 827242, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35309332

RESUMEN

It is critical to protect immunocompromised patients against COVID-19 with effective SARS-CoV-2 vaccination as they have an increased risk of developing severe disease. This is challenging, however, since effective mRNA vaccination requires the successful cooperation of several components of the innate and adaptive immune systems, both of which can be severely affected/deficient in immunocompromised people. In this article, we first review current knowledge on the immunobiology of SARS-COV-2 mRNA vaccination in animal models and in healthy humans. Next, we summarize data from early trials of SARS-COV-2 mRNA vaccination in patients with secondary or primary immunodeficiency. These early clinical trials identified common predictors of lower response to the vaccine such as anti-CD19, anti-CD20 or anti-CD38 therapies, low (naive) CD4+ T-cell counts, genetic or therapeutic Bruton tyrosine kinase deficiency, treatment with antimetabolites, CTLA4 agonists or JAK inhibitors, and vaccination with BNT162b2 versus mRNA1273 vaccine. Finally, we review the first data on third dose mRNA vaccine administration in immunocompromised patients and discuss recent strategies of temporarily holding/pausing immunosuppressive medication during vaccination.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Vacuna nCoV-2019 mRNA-1273 , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/prevención & control , Humanos , Huésped Inmunocomprometido , ARN Mensajero/genética , SARS-CoV-2 , Vacunación , Vacunas Sintéticas , Vacunas de ARNm
4.
J Hematol Oncol ; 14(1): 174, 2021 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-34689821

RESUMEN

BACKGROUND: Factors affecting response to SARS-CoV-2 mRNA vaccine in allogeneic hematopoietic stem cell transplantation (allo-HCT) recipients remain to be elucidated. METHODS: Forty allo-HCT recipients were included in a study of immunization with BNT162b2 mRNA vaccine at days 0 and 21. Binding antibodies (Ab) to SARS-CoV-2 receptor binding domain (RBD) were assessed at days 0, 21, 28, and 49 while neutralizing Ab against SARS-CoV-2 wild type (NT50) were assessed at days 0 and 49. Results observed in allo-HCT patients were compared to those obtained in 40 healthy adults naive of SARS-CoV-2 infection. Flow cytometry analysis of peripheral blood cells was performed before vaccination to identify potential predictors of Ab responses. RESULTS: Three patients had detectable anti-RBD Ab before vaccination. Among the 37 SARS-CoV-2 naive patients, 20 (54%) and 32 (86%) patients had detectable anti-RBD Ab 21 days and 49 days postvaccination. Comparing anti-RBD Ab levels in allo-HCT recipients and healthy adults, we observed significantly lower anti-RBD Ab levels in allo-HCT recipients at days 21, 28 and 49. Further, 49% of allo-HCT patients versus 88% of healthy adults had detectable NT50 Ab at day 49 while allo-HCT recipients had significantly lower NT50 Ab titers than healthy adults (P = 0.0004). Ongoing moderate/severe chronic GVHD (P < 0.01) as well as rituximab administration in the year prior to vaccination (P < 0.05) correlated with low anti-RBD and NT50 Ab titers at 49 days after the first vaccination in multivariate analyses. Compared to healthy adults, allo-HCT patients without chronic GVHD or rituximab therapy had comparable anti-RBD Ab levels and NT50 Ab titers at day 49. Flow cytometry analyses before vaccination indicated that Ab responses in allo-HCT patients were strongly correlated with the number of memory B cells and of naive CD4+ T cells (r > 0.5, P < 0.01) and more weakly with the number of follicular helper T cells (r = 0.4, P = 0.01). CONCLUSIONS: Chronic GVHD and rituximab administration in allo-HCT recipients are associated with reduced Ab responses to BNT162b2 vaccination. Immunological markers could help identify allo-HCT patients at risk of poor Ab response to mRNA vaccination. TRIAL REGISTRATION: The study was registered at clinicaltrialsregister.eu on 11 March 2021 (EudractCT # 2021-000673-83).


Asunto(s)
Anticuerpos Neutralizantes/biosíntesis , Vacunas contra la COVID-19/uso terapéutico , Trasplante de Células Madre Hematopoyéticas/métodos , Adulto , Anciano , Anticuerpos Neutralizantes/inmunología , Vacuna BNT162 , Vacunas contra la COVID-19/inmunología , Humanos , Persona de Mediana Edad , Acondicionamiento Pretrasplante , Inmunología del Trasplante , Trasplante Homólogo
5.
Biol Open ; 10(8)2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34378778

RESUMEN

Research is a long process in which the collaboration between stakeholders involved in academia, industry and governments is crucial. Ideally, these stakeholders should work together to better align the innovation process with the values, needs and expectations of the research community. Reflecting on how we perform research and how our discoveries can benefit society is therefore of the utmost importance. The complete system of shared values concerning the research process is embedded in the concept of research culture, which has been gaining more attention in recent years. With the hope of increasing awareness of research culture among established scientists and early-career professionals, in this manuscript we discuss what research culture is, what it consists of and how it can positively influence scientific developments.


Asunto(s)
Cultura , Investigación , Selección de Profesión , Humanos , Medio Social
6.
Bone Marrow Transplant ; 56(11): 2672-2681, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34172892

RESUMEN

We assessed the impact of the Janus Kinase (JAK) 1 inhibitor itacitinib on xenogeneic graft-versus-host disease (xGVHD). XGVHD was induced by i.v. injection 20 × 106 human peripheral blood mononuclear cells (hPBMC) in NSG mice on day 0. Itacitinib (3 mg, ≈120 mg/kg) or methylcellulose was administered by force-feeding twice a day from day 3 to day 28. Mice were followed for xGVHD score and survival. In addition, human T-cell engraftment and as well as human T-cell subtypes were monitored in blood on days 14, 21, and 28 after transplantation. We observed that itacitinib-treated mice had significantly longer survival than control mice (median 45 versus 33 days; P < 0.001). Further, they also had lower absolute numbers of human CD4+ T cells on days 21 and 28 after transplantation as well as of human CD8+ T cells on days 14, 21, and 28 after transplantation. In addition, itacitinib-treated mice had higher frequencies of human regulatory T cells (Treg) on days 21 and 28 after transplantation. In summary, our data indicate that itacitinib decreases human T-cell engraftment, increases Treg frequencies and attenuates xGVHD in NSG mice transplanted with hPBMC.


Asunto(s)
Enfermedad Injerto contra Huésped , Acetonitrilos , Animales , Linfocitos T CD8-positivos , Enfermedad Injerto contra Huésped/prevención & control , Leucocitos Mononucleares , Ratones , Ratones SCID , Pirazoles , Pirimidinas , Pirroles
7.
Front Immunol ; 11: 583564, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193397

RESUMEN

Allogeneic hematopoietic cell transplantation (alloHCT) has been used as cellular immunotherapy against hematological cancers for more than six decades. Its therapeutic efficacy relies on the cytoreductive effects of the conditioning regimen but also on potent graft-versus-tumor (GVT) reactions mediated by donor-derived immune cells. However, beneficial GVT effects may be counterbalanced by acute GVHD (aGVHD), a systemic syndrome in which donor immune cells attack healthy tissues of the recipient, resulting in severe inflammatory lesions mainly of the skin, gut, and liver. Despite standard prophylaxis regimens, aGVHD still occurs in approximately 20-50% of alloHCT recipients and remains a leading cause of transplant-related mortality. Over the past two decades, advances in the understanding its pathophysiology have helped to redefine aGVHD reactions and clinical presentations as well as developing novel strategies to optimize its prevention. In this review, we provide a brief overview of current knowledge on aGVHD immunopathology and discuss current approaches and novel strategies being developed and evaluated in clinical trials for aGVHD prevention. Optimal prophylaxis of aGVHD would prevent the development of clinically significant aGVHD, while preserving sufficient immune responsiveness to maintain beneficial GVT effects and immune defenses against pathogens.


Asunto(s)
Enfermedad Injerto contra Huésped/inmunología , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Animales , Enfermedad Injerto contra Huésped/prevención & control , Humanos , Trasplante Homólogo/efectos adversos
8.
Oncotarget ; 8(33): 54478-54496, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28903357

RESUMEN

Cancer-induced bone pain (CIBP) is common in patients with bone metastases (BM), significantly impairing quality of life. The current treatments for CIBP are limited since they are often ineffective. Local acidosis derived from glycolytic carcinoma and tumor-induced osteolysis is only barely explored cause of pain. We found that breast carcinoma cells that prefer bone as a metastatic site have very high extracellular proton efflux and expression of pumps/ion transporters associated with acid-base balance (MCT4, CA9, and V-ATPase). Further, the impairment of intratumoral acidification via V-ATPase targeting in xenografts with BM significantly reduced CIBP, as measured by incapacitance test. We hypothesize that in addition to the direct acid-induced stimulation of nociceptors in the bone, a novel mechanism mediated by the acid-induced and tumor-associated mesenchymal stroma might ultimately lead to nociceptor sensitization and hyperalgesia. Consistent with this, short-term exposure of cancer-associated fibroblasts, mesenchymal stem cells, and osteoblasts to pH 6.8 promotes the expression of inflammatory and nociceptive mediators (NGF, BDNF, IL6, IL8, IL1b and CCL5). This is also consistent with a significant correlation between breakthrough pain, measured by pain questionnaire, and combined high serum levels of BDNF and IL6 in patients with BM, and also by immunofluorescence staining showing IL8 expression that was more in mesenchymal stromal cells rather than in tumors cells, and close to LAMP-2 positive acidifying carcinoma cells in BM tissue sections. In summary, intratumoral acidification in BM might promote CIBP also by activating the tumor-associated stroma, offering a new target for palliative treatments in advanced cancer.

9.
J Chem Phys ; 146(23): 234703, 2017 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-28641434

RESUMEN

This article describes the structure and the electronic properties of a series of layered perovskites of a general formula (A+)2(SnX4)-2 where X = I, Br and A+ is an organic cation, either formamidinium, 1-methylimidazolium, or phenylethylammonium. For each system, two conformations are considered, with eclipsed or staggered stacking of the adjacent inorganic layers. Geometry optimizations are performed at the density functional theory level with generalized gradient approximation (GGA) functional and semiempirical correction for dispersion energies; band profiles and bandgaps are computed including both spin orbit coupling (SOC) and correlation (GW) effects through an additive scheme. The theoretical procedures are validated by reproducing the experimental data of a well known 3D tin iodide perovskite. The results, combined with the calculations previously reported on PbI4 analogues, allow us to discuss the effect of cation, metal, and halide substitution in these systems and in particular to explore the possibility of changing the electronic bandgap as required by different applications. The balance of SOC and GW effects depends on the chemical nature of the studied perovskites and strongly influences the value of the simulated bandgap.

10.
J Chem Theory Comput ; 13(4): 1756-1768, 2017 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-28240874

RESUMEN

The force fields used to simulate the gas adsorption in porous materials are strongly dominated by the van der Waals (vdW) terms. Here we discuss the delicate problem to estimate these terms accurately, analyzing the effect of different models. To this end, we simulated the physisorption of CH4, CO2, and Ar into various Al-free microporous zeolites (ITQ-29, SSZ-13, and silicalite-1), comparing the theoretical results with accurate experimental isotherms. The vdW terms in the force fields were parametrized against the free gas densities and high-level quantum mechanical (QM) calculations, comparing different methods to evaluate the dispersion energies. In particular, MP2 and DFT with semiempirical corrections, with suitable basis sets, were chosen to approximate the best QM calculations; either Lennard-Jones or Morse expressions were used to include the vdW terms in the force fields. The comparison of the simulated and experimental isotherms revealed that a strong interplay exists between the definition of the dispersion energies and the functional form used in the force field; these results are fairly general and reproducible, at least for the systems considered here. On this basis, the reliability of different models can be discussed, and a recipe can be provided to obtain accurate simulated adsorption isotherms.

11.
Langmuir ; 30(14): 4147-56, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24646367

RESUMEN

The adsorption isotherms of CO2 in several porous aromatic frameworks (PAFs) have been simulated with Grand Canonical Monte Carlo technique, to support the synthesis of new materials for efficient carbon dioxide capture and storage. The simulations covered the 0-60 bar pressure range and were repeated at 273, 298, and 323 K. The force field employed in the simulations was optimized to fit the correct behavior of the free gas and to reproduce the CO2-phenyl interactions computed at high quantum mechanical level. PAFs are based on the diamond structure, with polyaromatic chains inserted in C-C bonds. We examined four PAF-30n (n being the number of phenyl rings in the aromatic linkers), finding that PAF-302 is overall the best performing, although PAF-301 provides higher adsorbed densities at very low pressure. The CO2 adsorption then was simulated in a number of modified PAF-302, with different functional groups (aminomethane, toluene, pyridine, and imidazole) attached to the phenyl chains; different degrees of substitution (25%, 50%, and 100% derivatized rings) were considered. The effects of functionalization and the dependence on the substitution degree are carefully discussed, to determine the most promising materials at low, intermediate, and high pressures.

12.
Langmuir ; 28(40): 14405-14, 2012 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-22935012

RESUMEN

The adsorption isotherms of methane in four micro- and mesoporous materials, based on the diamond structure with (poly)phenyl chains inserted in all the C-C bonds, have been simulated with Grand Canonical Monte Carlo technique. The pressure range was extended above 250 bar and the isotherms were computed at 298, 313, and 353 K, to explore the potentiality of these materials for automotive applications, increasing the capacity of high-pressure tanks or storing a comparable amount of gas at much lower pressure. The force field employed in the simulations was optimized to fit the correct behavior of the free gas in all the pressure range and to reproduce the methane-phenyl interactions computed at high quantum mechanical level (post Hartree-Fock). All the examined materials showed a high affinity for methane, ensuring a larger storage of gas than simple compression in all the conditions: two samples exceeded the target proposed by U.S. Department of Energy for methane storage in low-pressure fuel tanks (180 cm(3) (STP)/cm(3) at 35 bar and room temperature).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...